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Key results

« Nitrous oxide emissions of cropland soils and grassland soils exhibited distinct
emission patterns

* On cropland soils significant amounts of N20O emit during autumn to spring and freeze

Rationale thaw induced emission peaks highly impact the annual N20O budget. Increasing the
N use efficiency over the year would be the most promising way to mitigate N20
« Last decades efforts in measuring direct annual and seasonal N20O emissions on plot scale built emissions on cropland soils.
up datasets covering wide ranges of environmental conditions and management options providing

* |In contrast, on grassland N20 emission peaks in response to precipitation events and

a fertilisation dominated annual N20O emissions. Magnitude of emission peaks on

« Statistical and hybrid approaches (fuzzy inference scheme) were used to infer responses of direct combined  effects of fertilizer application and precipitation. Managing nitrification
annual and seasonal N20O emissions on natural and anthropogenic drivers from multi site and denitrification in the growing period could be sufficient to minimize annual N20O
measurements. emissions on grasslands.
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Model results
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temperature (black lines and points; left ordinate) and emission forcing potentials (grey emissions
lines and right ordinate ); a) Bavaria, cropland (Dorsch, 1999) b) Aberystwyth, grassland
(Dobbie et al., 2003)
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